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1 Introduction

The bidirectional associative memory neural network-
s (BAM) models were first introduced by Kosko
[1, 2, 3]. It is a special class of recurrent neural net-
works that can store bipolar vector pairs. The BAM
neural network is composed of neurons arranged in
two layers , theX-layer andY -layer. The neurons
in one layer are fully interconnected to the neuron-
s in the other layer, while there are no interconnec-
tions among neurons in the same layer. Through it-
erations of forward and backward information flows
between the two layers, it performs two-way associa-
tive search for stored bipolar vector pairs and gener-
alize the single-layer autoassociative Hebbian corre-
lation to two-layer pattern-matched heteroassociative
circuits. Therefore, this class of networks possess-
es a good applications prospects in the areas of pat-
tern recognition, signal and image process, automatic
control. Recently they have been the object of inten-
sive analysis by numerous authors in recent years. In
particular, many researchers have studied the dynam-
ics of BAM neural networks with or without delays
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24] including stability and peri-
odic solutions. In Refs.[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] the
authors discussed the problem of the stability of the
BAM networks with or without delays, and obtained
sufficient conditions to ensure the stability of equilib-
rium point. Recently some authors (see,[11, 15, 16])
investigated another dynamical behaviors-periodic os-
cillatory. some sufficient conditions are obtained to
ensure other solution converging the periodic solution.

In this paper we would like to integrate fuzzy opera-
tions into BAM neural networks and maintain local
connectedness among cells. Speaking of fuzzy oper-
ations, Yang et al. [25, 26, 27] first combined those
operations with cellular neural networks and investi-
gated the stability of fuzzy cellular neural network-
s(FCNNs ). Studies have shown that FCNNs has its
potential in image processing and pattern recognition,
and some results have been reported on stability and
periodicity of FCNNs [25, 26, 27, 28, 29, 30, 31, 32].
Up to now, to the best of our knowledge, dynamical
behaviors of fuzzy BAM neural networks are seldom
considered. On the other hand, time delays inevitably
occurs in electronic neural networks owing to the un-
avoidable finite switching speed of amplifiers. It is de-
sirable to study the fuzzy BAM neural networks which
has a potential significance in the design and applica-
tions of stable neural circuits for neural networks with
delays.

Motivated by the above discussion, in this paper,
we investigate the fuzzy BAM neural networks with
constant delays modelled by the following system





x′i(t) = −aixi(t) +
∧m

j=1 αjifj(yj(t− τ))

+
∨m

j=1 βjifj(yj(t− τ)) +
∧m

j=1 Tjiuj
++

∨m
j=1Hjiuj + Ii

y′j(t) = −bjyj(t) +
∧n

i=1 pijgi(xi(t− σ))

+
∨n

i=1 qijgi(xi(t− σ)) +
∧n

i=1Kijui
+
∨n

i=1 Lijui + Jj
(1)
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for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, wheren andm
correspond to the number of neurons inX-layer and
Y -layer, respectively.xi(t) andyj(t) are the activa-
tions of theith neuron and thejth neurons, respective-
ly, ai > 0, bj > 0, they denote the rate with which the
ith neuron andjth neuron will reset its potential to the
resting state in isolation when disconnected from the
network and external inputs;αji, βji, Tji andHji are
elements of fuzzy feedback MIN template and fuzzy
feedback MAX template, fuzzy feed-forward MIN
template and fuzzy feed-forward MAX template inX-
layer, respectively;pij, qij ,Kij andLij are elements
of fuzzy feedback MIN template and fuzzy feedback
MAX template, fuzzy feed-forward MIN template and
fuzzy feed-forward MAX template inY -layer, respec-
tively;

∧
and

∨
denote the fuzzy AND and fuzzy OR

operation , respectively;uj andui denote external in-
put of theith neurons inX-layer and external input
of thejth neurons inY -layer, respectively ;Ii andJj
represent bias of theith neurons inX-layer and bias
of the jth neurons inY -layer, respectively;τ > 0
andσ > 0 are constants and correspond to the trans-
mission delays, andfj(·), gi(·) are signal transmission
functions.

The main purpose of this paper is, employing
fixed point theorem and differential inequality tech-
niques, to give some sufficient conditions for the the
existence, uniqueness and global exponential stability
of equilibrium point of system (1). Our results extend
and improve the corresponding works in the earlier
publications.

The initial conditions associated with system (1)
are of the form

xi(s) = φi(s), s ∈ (−σ, 0], i = 1, 2, · · · , n

yj(s) = ψj(s), s ∈ (−τ, 0], j = 1, 2, · · · ,m

whereφi(·) andψj(·) are continuous bounded func-
tions defined on[−σ, 0] and[−τ, 0], respectively.

Throughout this paper, we always make the fol-
lowing assumption.

Assumption A the signal transmission functions
fj(·), gi(·)(i = 1, 2, · · · , n, j = 1, 2, · · · ,m) are Lip-
schtiz continuous onR with Lipschtiz constantsµj
andνi, namely, forx, y ∈ R

|fj(x)−fj(y)| ≤ µj|x−y|, |gi(x)−gi(y)| ≤ νi|x−y|.

To be convenience, we introduce some notations.x =
(x1, x2, · · · , xl)

T ∈ Rl denotes a column vector, in
which the symbol(T ) denotes the transpose of vector.
For matrixD = (dij)l×l, DT denotes the transpose
of D, andEl denotes the identity matrix of sizel. A
matrix or vectorD ≥ 0 means that all entries ofD are
greater than or equal to zero.D > 0 can be defined

similarly. For matrices or vectorsD andE, D ≥ E
(resp.D > E) means thatD − E ≥ 0 (resp.D −
E > 0). Let’s define that for anyω ∈ Rn+m, ‖ω‖ =
max1≤k≤n+m |ωk|.

Definition 1 Let Z∗ = (x∗1, · · · , x
∗
n, y

∗
1 , , · · · , y

∗
m)T

be an equilibrium point of system (1.1) withx∗ =
(x∗1, · · · , x

∗
n)

T , y∗ = (y∗1 , , · · · , y
∗
m)T . If there ex-

ist positive constantsM,λ such that for any so-
lution z(t) = (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T

of system (1) with initial value(φ,ψ) and φ =
(φ1(t), φ2(t), · · · , φn(t))

T ∈ C([−σ, 0], Rn), ψ =
(ψ1(t), ψ2(t), · · · , ψm(t))T ∈ C([−τ, 0], Rm),

|xi(t)− x∗i | ≤M‖(φ,ψ) − (x∗, y∗)‖e−λt,

and

|yj(t)− y∗j | ≤M‖(φ,ψ) − (x∗, y∗)‖e−λt

wherei = 1, 2, · · · , n, j = 1, 2, · · · ,m

‖(φ,ψ) − (x∗, y∗)‖ = max

{
max
1≤i≤n

sup
−σ≤t≤0

|φi(t)− x∗i |,

max
1≤j≤m

sup
−τ≤t≤0

|ψj(t)− y∗j |

}

Thenz∗ is said to be globally exponentially stable.

Definition 2 If f(t) : R → R is a continuous func-
tion, then the upper left derivative off(t) is defined
as

D−f(t) = lim
h→0−

sup
1

h
(f(t+ h)− f(t)).

Definition 3 A real matrixA = (aij)l×l is said to be
an M-matrix ifaij ≤ 0, i, j = 1, 2, . . . , l, i 6= j, and
all successive principal minors ofA are positive.

Lemma 4 LetA = (aij) be anl× l matrix with non-
positive off-diagonal elements. Then the following s-
tatements are equivalent:
(i) A is an M-matrix;
(ii) the real parts of all eigenvalues ofA are positive;
(iii) there exists a vectorη > 0 such thatAη > 0;
(iv) there exists a vectorξ > 0 such thatξTA > 0;
(v) there exists a positive definitel× l diagonal ma-
trix D such thatAD +DAT > 0.

Lemma 5 [25] Supposex andy are two states of sys-
tem (1), then we have
∣∣∣∣∣∣

n∧

j=1

αijgj(x)−
n∧

j=1

αijgj(y)

∣∣∣∣∣∣
≤

n∑

j=1

|αij ||gj(x)−gj(y)|,

WSEAS TRANSACTIONS on SIGNAL PROCESSING Huayi Yin, Qianhong Zhang, Lihui Yang

E-ISSN: 2224-3488 196 Issue 4, Volume 9, October 2013



and
∣∣∣∣∣∣

n∨

j=1

βijgj(x)−
n∨

j=1

βijgj(y)

∣∣∣∣∣∣
≤

n∑

j=1

|βij ||gj(x)−gj(y)|

Lemma 6 LetA ≥ 0 be anl×lmatrix andρ(A) < 1,
then(El−A)

−1 ≥ 0,whereρ(A) denotes the spectral
radius ofA.

The remainder of this paper is organized as follows. In
Section 2 we shall give some sufficient conditions for
checking the existence and uniqueness of equilibrium
point. In Section 3 we present some sufficient con-
ditions for global exponential stability of the unique
equilibrium point of (1). In Section 4 an example will
be given to illustrate effectiveness of our results ob-
tained. We will give a general conclusion in Section
5.

2 Existence and uniqueness of equi-
librium point

In this section, we will derive some sufficient condi-
tions for the existence and uniqueness of equilibrium
point for fuzzy BAM neural networks model (1).

Theorem 7 Suppose thatAssumption A holds and
ρ(D−1EU) < 1, where

D = diag(a1, · · · , an, b1, · · · , bm),

U = diag(µ1, · · · , µn, ν1, · · · , νm),

E =

(
0n×n P T

QT 0m×m

)
, P = (|αji|+ |βji|)m×n,

Q = (|pij |+ |qij|)n×m

Then there exists a unique equilibrium point of system
(1).

Proof: An equilibrium point z∗ = (x∗1, · · · , x
∗
n,

y∗1, · · · , y
∗
m)T ∈ Rn+m is a constant vector satisfying

system (1), i. e.,




x∗i = a−1
i

[∧m
j=1 αjifj(y

∗
j ) +

∨m
j=1 βjifj(y

∗
j )

+
∧m

j=1 Tjiuj +
∨m

j=1Hjiuj + Ii
]

y∗j = b−1
j [

∧n
i=1 pijgi(x

∗
i ) +

∨n
i=1 qijgi(x

∗
i )

+
∧n

i=1Kijui +
∨n

i=1 Lijui + Jj ]
(2)

To finish the proof, it suffices to prove that (2) has a u-
nique solution. Consider a mappingΦ = (Φi,Ψj)

T :

Rn+m → Rn+m defined by, fori = 1, 2, · · · , n, j =
1, 2, · · · ,m.

Φi(si) = a−1
i




m∧

j=1

αjifj(vj) +
m∨

j=1

βjifj(vj)




+
m∧

j=1

Tjiuj +
m∨

j=1

Hjiuj + Ii


 , (3)

Ψj(vj) = b−1
j




n∧

i=1

pijgi(si) +
m∨

j=1

qijgi(si)




+
n∧

i=1

Kijui +
n∨

i=1

Lijui + Jj

]
, (4)

We show thatΦ : Rn+m → Rn+m is glob-
al contraction mapping onRn+m. In fac-
t, for s = (s1, · · · , sn, v1, · · · , vm)T , s =
(s1, · · · , sn, v1, · · · , vm)T ∈ Rn+m. By using
Assumption A andLemma 5 , we have

|Φi(si) − Φi(si)|

= a−1
i




m∧

j=1

αjifj(vj)−
m∧

j=1

αjifj(vj)




+a−1
i




m∨

j=1

βjifj(vj)−
m∨

j=1

βjifj(vj)




≤ a−1
i

m∑

j=1

(|αji|+ |βji|)µj |vj − vj|, (5)

|Ψj(vj) − Ψj(vj)|

= b−1
j

[
n∧

i=1

pijgi(si)−
n∧

i=1

pijgi(si)

]

+b−1
j

[
n∨

i=1

qijgi(si)−
n∨

i=1

qijgi(si)

]

≤ b−1
j

n∑

i=1

(|pij |+ |qij |)νi|si − si|. (6)

In view of (5)-(6), it follows that

|Φ(s1, · · · , sn, v1, · · · , vm) − Φ(s1, · · · , sn, v1, · · · , vm)|

≤ F




|s1 − s1|
...

|sn − sn|
|v1 − v1|

...
|vm − vm|




(7)
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whereF = D−1EU = (wij)(n+m)×(n+m). Let ξ be
a positive integer. Then from (7) it follows that

|Φξ(s)− Φξ(s)| ≤ F ξ




|s1 − s1|
...

|sn − sn|
|v1 − v1|

...
|vm − vm|




(8)

Sinceρ(F ) < 1, we obtainlimξ→+∞ F ξ = 0, which
implies that there exist a positive integerN and a pos-
itive constantr < 1 such that

FN = (D−1EU)N = (hij)(n+m)×(n+m),

n+m∑

j=1

hij ≤ r, i = 1, 2, · · · , n+m. (9)

Noting that (8) and (9), it follows that

|ΦN (s) − ΦN (s)| ≤ FN




|s1 − s1|
...

|sn − sn|
|v1 − v1|

...
|vm − vm|




≤ FN




‖s− s‖
...

‖s− s‖
‖s− s‖

...
‖s− s‖




= ‖s− s‖




∑n+m
j=1 h1j

...∑n+m
j=1 hnj∑n+m

j=1 h(n+1)j
...∑n+m

j=1 h(n+m)j




(10)

which implies that‖ΦN (s) − ΦN (s)‖ ≤ r‖s − s‖.
Since r < 1, it is obvious that the mappingΦN :
Rn+m → Rn+m is a contraction mapping. By the
fixed point theorem of Banach space,Φ possesses a
unique fixed point inRn+m which is unique solution
of the system (2), namely, there exist a unique equi-
librium point of system (1). The proof of Theorem 7
is completed. ⊓⊔

3 Global exponential stability of e-
quilibrium point

In this section, we shall give some sufficient condi-
tions to guarantee global exponential stability of equi-
librium point of system (1).

Theorem 8 Suppose thatAssumption A holds and
ρ(D−1EU) < 1. Letz∗ = (x∗1, · · · , x

∗
n, y

∗
1, · · · , y

∗
m)T

be a unique equilibrium point of system (1). Then the
unique equilibrium pointz∗ of system (1) is globally
exponentially stable.

Proof: Let z(t) = (x1(t), · · · , xn(t), y1(t), · · · ,
ym(t))T be an arbitrary solution of sys-
tem (1) with initial value (φ,ψ) and φ =
(φ1(t), φ2(t), · · · , φn(t))

T ∈ C([−σ, 0];Rn), ψ =
(ψ1(t), ψ2(t), · · · , ψn(t))

T ∈ C([−τ, 0];Rm).Set
xi(t) = xi(t) − x∗i , yj(t) = yj(t) − y∗j , i =
1, 2, · · · , n, j = 1, 2, · · · ,m.

From (1) and (2), we have




x′i(t) = −aixi(t) +
[∧m

j=1 αjifj(yj(t− τ))

−
∧m

j=1 αjifj(y
∗
j )
]
+
[∨m

j=1 βji

× fj(yj(t− τ))−
∨m

j=1 βjifj(y
∗
j )
]

y′j(t) = −bjyj(t) + [
∧n

i=1 pijgi(xi(t− σ))

−
∧n

i=1 pijgi(x
∗
i )] + [

∨n
i=1 qij

×gi(xi(t− σ)) −
∨n

i=1 qijgi(x
∗
i )]

(11)
Using assumption A, Definition 2andLemma

5, from (11), we have




D−|xi(t)|

≤ −ai|xi(t)|+
∑m

j=1(|αji|+ |βji|)

×µj|yj(t− τ)− y∗j |

≤ −ai|xi(t)|+
∑m

j=1(|αji|+ |βji|)µj ỹj(t)

D−|yj(t)|

≤ −bj |yj(t)|+
∑n

i=1(|pij |+ |qij |)

×νi|xi(t− σ)− x∗i |

≤ −bj |yj(t)|+
∑n

i=1(|pij |+ |qij |)νix̃i(t)
(12)
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where x̃i(t) = supt−σ≤s≤t |xi(s)|, ỹj(t) =
supt−τ≤s≤t |yj(s)|, i = 1, 2, · · · , n; j = 1, 2, · · · ,m.

Since ρ(D−1EU) = ρ(F ) < 1, it follows
from Lemma 4 and Lemma 6 that En+m −
D−1EU is an M-matrix, therefore there exists a
vector η = (η1, η2, · · · , ηn, ζ1, ζ2, · · · , ζm)T >
(0, 0, · · · , 0, 0, 0, · · · , 0)T such that

(En+m −D−1EU)η > (0, 0, · · · , 0, 0, 0, · · · , 0)T .

Hence, fori = 1, 2, · · · , n; j = 1, 2, · · · ,m,

ηi −
m∑

j=1

a−1
i (|αji|+ |βji|)µjζj > 0,

and

ζj −
n∑

i=1

b−1
j (|pij |+ |qij|)νiηi > 0,

which implies that




−aiηi +
∑m

j=1(|αji|+ |βji|)µjζj < 0,

−bjζj +
∑n

i=1(|pij |+ |qij |)νiηi < 0.

(13)

We can choose a positive constantλ < 1 such that,
for i = 1, 2, · · · , n; j = 1, 2, · · · ,m





ληi +
[
−aiηi +

∑m
j=1(|αji|+ |βji|)µjζje

λτ
]
< 0,

λζj +
[
−bjζj +

∑n
i=1(|pij|+ |qij|)νiηie

λσ
]
< 0.

(14)
For all t ∈ [−σ − τ, 0], we can choose a constant
γ > 1 such that

γηie
−λt > 1, γζje

−λt > 1. (15)

For∀ε > 0, set





∆ =
∑n

i=1 x̃i(0) +
∑m

j=1
˜yj(0);

Vi(t) = γηi(∆ + ε)e−λt,

Wj(t) = γζj(∆ + ε)e−λt

(16)

Caculating the upper left derivative ofVi(t) and
Wj(t), respecively, and noting that (14)

D− Vi(t)

= −λγηi(∆ + ε)e−λt

>


−aiηi +

m∑

j=1

(|αji|+ |βji|)µjζje
λτ




×γ(∆ + ε)e−λt

= −aiγηi(∆ + ε)e−λt +
m∑

j=1

(|αji|+ |βji|)

×µjζjγ(∆ + ε)e−λteλτ

= −aiVi(t) +
m∑

j=1

(|αji|+ |βji|)µjWj(t) (17)

and

D− Wj(t)

= −λγζj(∆ + ε)e−λt

>

[
−bjζj +

n∑

i=1

(|pij |+ |qij|)νiηie
λτ

]

×γ(∆ + ε)e−λt

= −bjγζj(∆ + ε)e−λt +
n∑

i=1

(|pij |+ |qij |)

×νiηiγ(∆ + ε)e−λteλτ

= −bjWj(t) +
n∑

i=1

(|pij |+ |qij|)νiVi(t) (18)

where Wj(t) = supt−τ≤s≤tWj(s), Vi(t) =
supt−τ≤s≤t Vi(s).i = 1, 2, · · · , n; j = 1, 2, · · · ,m.
from (15) and (16), we have




Vi(t) = γηi(∆ + ε)e−λt > |xi(t)|, t ∈ [−σ, 0],

Wj(t) = γζj(∆ + ε)e−λt > |yj(t)|, t ∈ [−τ, 0].
(19)

On the other hand, we claim that for allt > 0, i =
1, 2, · · · , n; j = 1, 2, · · · ,m.





Vi(t) = γηi(∆ + ε)e−λt > |xi(t)|;

Wj(t) = γζj(∆ + ε)e−λt > |yj(t)|,
(20)

By contrary, one of the following two cases must oc-
cur: (i) there must existi ∈ {1, 2, · · · , n} andt∗i > 0
such that forl = 1, 2, · · · , n, k = 1, 2, · · · ,m.





|xi(t
∗
i )| = Vi(t

∗
i ); |xl(t)| < Vl(t),∀t ∈ [−σ, t∗i ];

|yk(t)| < Wk(t),∀t ∈ [−τ, t∗i ].
(21)

(ii) there must existj ∈ {1, 2, · · · ,m} and t∗j > 0
such that forl = 1, 2, · · · , n, k = 1, 2, · · · ,m.





|yj(t
∗
i )| =Wj(t

∗
j) ; |xl(t)| < Vl(t), ∀t ∈ [−σ, t∗j ];

|yk(t)| < Wk(t), ∀t ∈ [−τ, t∗j ].
(22)
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Suppose case (i) occurs, we obtain

0 ≤ D−(|xi(t
∗
i )| − Vi(t

∗
i ))

= lim
h→0−

sup

{
|xi(t

∗
i + h)| − Vi(t

∗
i + h)

h

−
|xi(t

∗
i )| − Vi(t

∗
i )

h

}

≤ lim
h→0−

sup
|xi(t

∗
i + h)| − |xi(t

∗
i )|

h

− lim
h→0−

inf
Vi(t

∗
i + h)− Vi(t

∗
i )

h

= D−|xi(t
∗
i )| −D−Vi(t

∗
i ). (23)

In view of (12), (17) and (21), we have

D− |xi(t
∗
i )|

≤ −ai|xi(t
∗
i )|+

m∑

j=1

(|αji|+ |βji|)µj
˜yj(t∗i )

= −aiVi(t
∗
i ) +

m∑

j=1

(|αji|+ |βji|)µj
˜yj(t∗i )

≤ −aiVi(t
∗
i ) +

m∑

j=1

(|αji|+ |βji|)µjWj(t
∗
i )

< D−Vi(t
∗
i ) (24)

which contradicts (23).
Suppose case (ii) occurs, we obtain

0 ≤ D−(|yj(t
∗
j )| −Wj(t

∗
j ))

= lim
h→0−

sup

{
|yj(t

∗
j + h)| −Wj(t

∗
j + h)

h

−
|yj(t

∗
j)| −Wj(t

∗
j)

h

}

≤ lim
h→0−

sup
|yj(t

∗
j + h)| − |yj(t

∗
j )|

h

− lim
h→0−

inf
Wj(t

∗
j + h)−Wj(t

∗
j )

h

= D−|yj(t
∗
j )| −D−Wj(t

∗
j ). (25)

In view of (12), (18) and (22), we have

D− |yj(t
∗
j )|

≤ −bj|yj(t
∗
j)|+

n∑

i=1

(|pij |+ |qij|)νi
˜xi(t∗j )

= −biWj(t
∗
j ) +

n∑

i=1

(|pij |+ |qij |)νi
˜xi(t∗j )

≤ −bjWj(t
∗
j ) +

n∑

i=1

(|pij |+ |qij|)νiVi(t
∗
j)

< D−Wj(t
∗
j ) (26)

which contradicts (25). Therefore (20) holds.
Let ε→ 0+,

M = (n+m)max

{
max
1≤i≤n

{γηi}, max
1≤j≤m

{γζj}

}
+1,

we have from (20) that




|xi(t)− x∗i | ≤ γηi[∆ + ε]e−λt

≤ M‖(φ,ψ) − (x∗, y∗)‖e−λt

|yj(t)− y∗j | ≤ γζj[∆ + ε]e−λt

≤ M‖(φ,ψ) − (x∗, y∗)‖e−λt

(27)
for all t > 0, i = 1, 2, · · · , n; j = 1, 2, · · · ,m. The
proof of Theorem 8 is completed. ⊓⊔

Corollary 9 Suppose assumption A holds, and
if there exist some constantsηi > 0, (i =
1, 2, · · · , n); ζj > 0, (j = 1, 2, · · · ,m) such that




−aiηi +
∑m

j=1(|αji|+ |βji|)µjζj < 0,

−bjζj +
∑n

i=1(|pij |+ |qij|)νiηi < 0.

(28)

Then system (1) has a unique equilibrium pointz∗

which is globally exponentially stable.

Corollary 10 Let Assumption A hold, and suppose
thatEn+m−D−1EU is an M-matrix. Then system (1)
has a unique equilibrium pointz∗ which is globally
exponentially stable.

4 An illustrative example
In this section, we give an example to illustrate effec-
tiveness of our results.
Example 4.1 Considering the following fuzzy BAM
neural networks with constant delays.




x′i(t) = −aixi(t) +
∧2

j=1 αjifj(yj(t− τ))

+
∨2

j=1 βjifj(yj(t− τ))

+
∧2

j=1 Tjiuj +
∨2

j=1Hjiuj + Ii

y′j(t) = −bjyj(t) +
∧2

i=1 pijgi(xi(t− σ))

+
∨2

i=1 qijgi(xi(t− σ))

+
∧2

i=1Kijui +
∨2

i=1 Lijui + Jj
(29)

WSEAS TRANSACTIONS on SIGNAL PROCESSING Huayi Yin, Qianhong Zhang, Lihui Yang

E-ISSN: 2224-3488 200 Issue 4, Volume 9, October 2013



wherei, j = 1, 2.fi(x) = gi(x) =
1
2(|x + 1| − |x −

1|), ai = bj = 1, α11 = α12 = 1/3, α21 = α22 =
1/4, β11 = β12 = 1/5, β21 = β22 = 1/6, p11 =
p12 = 1/4, p21 = p22 = 1/3, q11 = q12 = 1/6, q21 =
q22 = 1/5, Tji = Hji = Kij = Lij = 1, ui = uj =
1, (i, j = 1, 2), Ii = Jj = 1, (i, j = 1, 2), σ = τ = 2.

So, by easy computation, we can see that
ρ(D−1EU) = 0.95 < 1. Therefore, from Theorem 7,
system (29) has an unique equilibrium point which is
globally exponentially stable (see Fig.1.).
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Fig.1. The Dynamics of system (29) with the initial values x
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5 Conclusion
In this paper, fuzzy BAM neural networks with con-
stant delays has been studied. Some sufficient condi-
tions for existence, uniqueness and global exponential
stability of equilibrium point have been obtained. The
criteria of stability is simple and independent of time
delay. It is only associated with the templates of sys-
tem (1). Moreover an example is given to illustrate the
effectiveness of our results obtained.
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