WSEAS TRANSACTIONS on SIGNAL PROCESSING Huayi Yin, Qianhong Zhang, Lihui Yang

Analysis of global exponential stability of fuzzy BAM neural
networks with delays

HUAYI YIN QIANHONG ZHANG* LIHUI YANG
Xiamen University Guizhou University of Finance and  Hunan City University
School of Information ~ Economics, Guizhou Key LaboratoryDepartment of Mathematics
Sciences and Engineering  of Economics System Simulation  Yiyang, Hunan 413000

Xiamen, Fujian 361005 Guiyang, Guizhou 550004 P. R. China
P.R.China P.R.China [l.hh.yang@gmail.com
flhual@163.com Zgianhong68@163.com

Abstract: In this paper fuzzy bi-directional associative memory (BAM) neural networks with constant delays are
considered. Some sufficient conditions for existence and global exponential stability of unique equilibrium point
are established by using fixed point theorem and differential inequality techniques. The results obtained are easily
checked to guarantee existence, uniqueness and global exponential stability of equilibrium point.
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1

The bidirectional associative memory neural network-

Introduction In this paper we would like to integrate fuzzy opera-
tions into BAM neural networks and maintain local
connectedness among cells. Speaking of fuzzy oper-

s (BAM) models were first introduced by Kosko  aions, Yang et al. [25, 26, 27] first combined those

[1, 2, 3]. Itis a special class of recurrent neural net-
works that can store bipolar vector pairs. The BAM

operations with cellular neural networks and investi-
gated the stability of fuzzy cellular neural network-

neural network is composed of neurons arranged in g(FCNNs ). Studies have shown that FCNNs has its

two layers , theX-layer andY -layer. The neurons
in one layer are fully interconnected to the neuron-

potential in image processing and pattern recognition,
and some results have been reported on stability and

s in the other layer, while there are no interconnec- periodicity of FCNNSs [25, 26, 27, 28, 29, 30, 31, 32].

tions among neurons in the same layer. Through it-
erations of forward and backward information flows

between the two layers, it performs two-way associa-
tive search for stored bipolar vector pairs and gener-
alize the single-layer autoassociative Hebbian corre-
lation to two-layer pattern-matched heteroassociative
circuits. Therefore, this class of networks possess-

Up to now, to the best of our knowledge, dynamical
behaviors of fuzzy BAM neural networks are seldom
considered. On the other hand, time delays inevitably
occurs in electronic neural networks owing to the un-
avoidable finite switching speed of amplifiers. Itis de-
sirable to study the fuzzy BAM neural networks which
has a potential significance in the design and applica-

es a good applications prospects in the areas of pat- tions of stable neural circuits for neural networks with
tern recognition, signal and image process, automatic ge|ays.

control. Recently they have been the object of inten-

sive analysis by numerous authors in recent years. In
particular, many researchers have studied the dynam-
ics of BAM neural networks with or without delays

Motivated by the above discussion, in this paper,
we investigate the fuzzy BAM neural networks with
constant delays modelled by the following system

[1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24] including stability and peri-

/ m
odic solutions. In Refs.[1, 2, 3, 4,5, 6.7,8,9, 10 the | “i(0) = —aizi(b)+ /\Fltaﬂfﬂ(yﬂ(t mT))T_
authors discussed the problem of the stability of the +Vj:£nﬁj’fj(yj( = 7))+ Nz T
BAM networks with or without delays, and obtained + 4 Vjz Hjiug + 1
sufficient conditions to ensure the stability of equilib-
rium point. Recently some authors (see,[11, 15, 16]) | ¥;(t) = —bjy;(t) + Nity pijgi(zi(t — o))
investigated another dynamical behaviors-periodic os- + Vic1 ¢i9i(zi(t — o)) + Noy Kijug
cillatory. some sufficient conditions are obtained to + Vit Liju; + J;
ensure other solution converging the periodic solution. @
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fori =1,2,---,n,5 =1,2,---,m, wheren andm
correspond to the number of neuronsinlayer and
Y-layer, respectively.z;(t) andy;(t) are the activa-
tions of theith neuron and thgth neurons, respective-
ly, a; > 0,b; > 0, they denote the rate with which the
ith neuron andgth neuron will reset its potential to the
resting state in isolation when disconnected from the
network and external inputsy;;, 3;;,T;; and H; are
elements of fuzzy feedback MIN template and fuzzy
feedback MAX template, fuzzy feed-forward MIN
template and fuzzy feed-forward MAX templateXi
layer, respectivelyp;;, ¢;j, K;; and L;; are elements
of fuzzy feedback MIN template and fuzzy feedback
MAX template, fuzzy feed-forward MIN template and
fuzzy feed-forward MAX template ifr -layer, respec-
tively; A and\/ denote the fuzzy AND and fuzzy OR
operation , respectively}; andu; denote external in-
put of theith neurons inX-layer and external input
of the jth neurons intY-layer, respectively {; andJ;
represent bias of théh neurons inX-layer and bias
of the jth neurons inY -layer, respectively;r > 0
ando > 0 are constants and correspond to the trans-
mission delays, ang;(-), g;(-) are signal transmission
functions.

The main purpose of this paper is, employing
fixed point theorem and differential inequality tech-
nigues, to give some sufficient conditions for the the
existence, uniqueness and global exponential stability
of equilibrium point of system (1). Our results extend
and improve the corresponding works in the earlier
publications.

The initial conditions associated with system (1)
are of the form

zi(s) = ¢i(s),

yj(s):wj(s), L2,---,m

whereg;(-) and;(-) are continuous bounded func-
tions defined oni—o, 0] and[—7, 0], respectively.

Throughout this paper, we always make the fol-
lowing assumption.

s€ (0,0, i=1,2,---.n

se (—1,0, j=

Assumption A the signal transmission functions
f]()vgl()(z =12--,n,5=12,-- 7m) are Lip-
schtiz continuous o with Lipschtiz constantg:;
andy;, namely, forz,y € R

| fj(z) |gi(z)—gi(y)| < vilz—yl.

To be convenience, we introduce some notatians-
(x1,29, --,2;)T € R' denotes a column vector, in
which the symbol”) denotes the transpose of vector.
For matrix D = (d;;)ix;, DT denotes the transpose
of D, and E; denotes the identity matrix of siZze A
matrix or vectorD > 0 means that all entries @ are
greater than or equal to zer@ > 0 can be defined

—fiW)] < wjlz—yl,
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similarly. For matrices or vector® andE, D > E
(respD > FE) means thatD — E > 0 (respD —
E > 0). Let's define that for anw € R"*™, ||w| =
maxi<g<ntm |Wkl-

Definition 1 Let Z* = (z%,---, 2%, 95,, -, y5)7
be an equilibrium point of system (1.1) witf =
(l‘f,---,l’;)T,y* (yTM"Wy;kn)T' If there ex-
ist positive constants\/, A such that for any so-
lution =(t) = (x1(t), -, 2a(t),51(t), - ym(t))”
of system (1) with initial valug¢,) and ¢ =
(¢1(t)’ (b?(t)? e a(bn(t))T S C([_U7 0]7 R”)J/J
(7/)1@)7 T;Z)2(t)7 e 7¢m(t))T € C([_T> 0]7 Rm)1

j2i(t) — @i < Ml|(,¢) — (2°

) e,

and

ly;(t) = y; 1 < M|[(¢,9) — (a*,y")[le™™

wherei =1,2,---,n,j=1,2,---,m

max{max sup
1<i<n _5<t<0
max sup |Y

1<j<m _7<t<0 | ]()

(@,9) = (=" vl |9i(t) —

yj\}

Thenz* is said to be globally exponentially stable.

Definition 2 If f(¢) : R — R is a continuous func-
tion, then the upper left derivative gf(¢) is defined
as

D™ f(t) = lim sup

h—0—

1

S+ h) = F(2)).
Definition 3 A real matrix A = (a;;);x; is said to be
an M-matrix ifa;; < 0,4,5 = 1,2,...,1,@ # j, and
all successive principal minors of are positive.

Lemma4 Let A = (a;5) be anl x [ matrix with non-
positive off-diagonal elements. Then the following s-
tatements are equivalent:

(i) Aisan M-matrix;

(i) the real parts of all eigenvalues of are positive;
(iii) there exists a vecton > 0 such thatdn > 0;

(iv) there exists a vectaf > 0 such thatt” A > 0;

(v) there exists a positive definitex [ diagonal ma-
trix D such thatAD + DAT > 0.

Lemma 5 [25] Supposer andy are two states of sys-
tem (1), then we have

n

Z |ijl|gj (@

/\ aijg;(@ /\ ijg; (y i),
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and Rvtm s Rrt™ defined by, fori = 1,2,---,n,j =
1,2,---,m
\/ 5@393 \/ 5@]93 Z 5ZJ||93 (y)| m m
j=1 Qi(si) = a; ' | N\ ejifi(vy) + \ Bjifi(v)
j=1 j=1
Lemma 6 LetA > 0be anlx! matrixandp(A) < 1, g !
then(E;—A)~! > 0, wherep(A) denotes the spectral " ¥
radiu(s ofA.) o + N\ Ty + \/ Hjiwg + I ®3)
j=1 j=1
The remainder of this paper is organized as follows. In
Section 2 we shall give some sulfficient conditions for n m
ch_ecking the e_xistence and uniqueness of _equilibrium () = bj‘l /\ piigi(si) + \/ ¢i59i(s:)
point. In Section 3 we present some sufficient con- j=1
ditions for global exponential stability of the unique n n
equil_ibrium point of (1). In S_ection 4 an example will + /\ Kiju; + \/ Lijui + Ji|, (4)
be given to illustrate effectiveness of our results ob- i=1 i=1
tained. We will give a general conclusion in Section )
5 We show that® : R"™™ — R"™™ is glob-
al contraction mapping onR"™™, In fac-
. . . t, for s = (Sl,“‘,Sn,'Ul,"','Um)T,§ =
2 Existence and uniqueness of equi- (31, -,5,,71, +,0m) € R™™. By using
librium point Assumption A andLemma 5, we have
In this section, we will derive some sufficient condi-  [®i(si)) —  ®i(5)]
tions for the existence and uniqueness of equilibrium m m
point for fuzzy BAM neural networks model (1). = /\ ajifi(v) — N\ oifi(@;)
j=1 j=1

Theorem 7 Suppose thafssumption A holds and
p(D'EU) < 1, where

J=1

"V Biifi() =V ﬁjz’fj(@)}
j=1

D= diag(a17 e 7an7b17 o 7bm)7
a; VY (il + Bjawslv; —v5l, (5)

U:diag(,ufly"'>,Ufn>7/17"'7ym)7 <
j=1
Opxn  PT
E= < qu O ) P = (lagi| + [BjiJmxn,
W;(vj) — V(D)
Q = (Ipij| + 1gij | )nxm n n
: . I , = /\ i 9i(si) /\pijgi(gi)
Then there exists a unique equilibrium point of system ) I
1) n
—1 _
Proof: An equilibrium point 2* = (2%, 2%, +b; \_/ qij9i(si) — \_/ Qijgi(si)]
vl yi)T € R is a constant vector satisfying =t =
system (1), 1. e., < 0y (il + lasgvilsi =5l (6)
=1
* —1
;= a; |NjLrogifi(y;) + Vit Biifi(y;)
(NS035 07) + Vi B30 In view of (5)-(6), it follows that
+ Ajti Thivg + Vil Hjiug + Iz’] |D(s1,+ 80y V1570, Um)  — P31, B0, V1,0, D
B 51— 51
y;k = bj [/\z 1pmgz( ) + \/7, 1 %]gz( )
n n Sn — Sn
+ Niti Kijui + Vizy Lijui + Jj] - s F |\v1 ~ T y|
To finish the proof, it suffices to prove that (2) has a u- :
nique solution. Consider a mappidg= (®;, ¥;)7 : [
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whereF = D™ EU = (wij) (ng-m)x(n+m)- LELE be
a positive integer. Then from (7) it follows that

|s1 — 51|
B8(s) — af(s)| < k| 1
|1 — T4

|V, — T

Sincep(F) < 1, we obtainlimg_, 4 o, F* = 0, which
implies that there exist a positive integ¥rand a pos-
itive constant- < 1 such that

FN = (D_lEU)N = (hij)(n—l—m)x(n—i-m)a
n+m
Z hij <7, i=1,2,---,n+m. (9)
j=1

Noting that (8) and (9), it follows that

|s1 — 31
|<I>N(S) (I)N(E)| < FN |8n :in|
lv1 — 71
‘vm—gm‘
s =3
= oo s
- s =3l
s =3l
Z?;rlmhlj
R R S A L)

Z?ilm h(n+1)j

which implies that|®"V (s) — &V (3)|| < r||s — 3]|.
Sincer < 1, it is obvious that the mapping@” :
R™™ — R"™™ js a contraction mapping. By the
fixed point theorem of Banach spack,possesses a
unique fixed point inR™**" which is unique solution

of the system (2), namely, there exist a unique equi-
librium point of system (1). The proof of Theorem 7
is completed. O
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3 Global exponential stability of e-
quilibrium point

In this section, we shall give some sufficient condi-
tions to guarantee global exponential stability of equi-
librium point of system (1).

Theorem 8 Suppose thafisssumption A holds and
p(D_lEU) <1 Letz* = ('f{v U >x;kwy>lk7 T 7y;kn)T
be a unique equilibrium point of system (1). Then the
unique equilibrium point* of system (1) is globally
exponentially stable.
Proof: Let z(t) = (x1(t), -, zn(t),y1(t), -,
ym(t)T be an arbitrary solution of sys-
tem (1) with initial value (¢,¢) and ¢ =
((bl(t)a ¢2(t)7 o 7¢n(t))T S C([_U7 0]7 Rn)a 1/} =
(11 (t), (), - ()T €  C([—7,0]; R™).Set
1727"'7n7j = 1727"'7m'

From (1) and (2), we have

) = —adi(t) + [N asfi (st —7)
= NPy i (w)] + [V By
X Fi(yi(t = 7)) = Ve Bifi ()]

=b;7;(t) + [Nit1 pijgi(@i(t — o))

— Niz1pigi(x))] + [Vic1 aij

= Vit1 ¢i9i(z])]
(11)
Using assumption A, Definition 2and Lemma
5, from (11), we have

D™ [z;(t)]

X gi(z;(t — 0))

IN

—a; [T ()] + 2274 (gl + 185il)

Xpjly;(t — 1) — yj|

—ailTi ()] + X (legal + 185il) 195 ()

IN

D~ [g;(t)]

IN

—bjl7;(8)] + 2231 (Ipisl + lgis])

xvilxi(t — o) — x|

=b;|7,; ()| + 231 (Ipij| + [qij ) viza(t)
(12)

IN
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where z;(t) = sup_s<e< [Ti(s)],
SUPy_r<s<t |yj(s)|7Z - 1 2 7] = 1
Since p(D~'EU) = p(F) < 1, it follows
from Lemma 4 and Lemma 6 that E,,,, —
D~'EU is an M-matrix, therefore there exists a

vector n = (77177727"'777n7<17<27"'7Cm)T >
(0707"' 7070707"' 70)T such that

yi(t) =
2

(Epym — D7YEU)R > (0,0,---,0,0,0,---,0)T.

Hence, fori =1,2,---,n; j=1,2,---,m,

m
mi— Y a; eyl + 185l iG> 0,
j=1

and
Z bt

which |mpI|es that

‘plj‘ + ‘qw‘)yﬂh > 0

—ain; + 251 (Jeyil +185il)w; ¢ <0,
(13)

b+ i

We can choose a positive constant< 1 such that,
fori=1,2,---,n;5=1,2,---,m

1([pigl + lgiz)vimi < 0.

Mg + [—aim + S (el + 185 miGe] <0,
MG + =G + S llpi] + lasgvime | < 0.

(14)
For allt € [-o — 7,0], we can choose a constant
~ > 1 such that

ynie_M > 1, yg“je_)‘t > 1. (15)
Forve > 0, set
A = > 1$;()+Zy 1?4]()
Vilt) = mi(A+e)e™, (16)
Wj(t) = 7G(A+e) e

Caculating the upper left derivative df;(t) and
W;(t), respecively, and noting that (14)

D~ Vi(t)
= =mi(A+ E)G_M
m
> |—ami+ > (gl + 185 Ge
=1
xy(A +g)e ™
E-ISSN: 2224-3488 199
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=  —ani(A+e)e At+z (Jejl + [Bjil)
7j=1
XujCj’Y(AJFE) AT
= —a;Vi(t)+ Z lovji| + | Bjil ) s W. ( ) (17)
7j=1
and
D™ Wj(t)

= —MGAFe)e™
> =G+ > (pisl + lagg | vimie™
i=1

xy(A +e)e ™

= —byG(A+e)e ™M+ (Ipijl + lais])

i=1
xviny (A + e)e e
= —b W +Z |pzy| + |qU|)Vz Z( ) (18)
=1
where W;(t) = sup,_ <, W;(s),Vi(t ) =
SUP_r<s<y Vi(s)d = 1,2,--- m;j = 1,2,

from (15) and (16), we have

7772(A + e)e_M > |fl(t)|7 le [_07 0]7

Wi(t) = v¢GA+e)e™ > [g;(1)],t € [-7,0].
(19)
On the other hand, we claim that for all> 0,7 =

1727"'7n;j = 1727"'7m
Vit) = (A +e)e > [zi(t);
(20)
W;(t) VG A+ e)e™ > [7;(t),

By contrary, one of the following two cases must oc-
cur: (i) there must exist € {1,2,---,n} andt} > 0
suchthatfod =1,2,---,n,k=1,2,---,m

Zi(87)] = Vi(t7); [z ()| < Vi(t), Vt € [—o, t]];

|yk(t)| < Wk(t)7Vt € [_7_7 t:]

(21)

(i) there must existj € {1,2,---,m} andt; > 0
suchthatfod =1,2,--- ,n,k=1,2,---,m

7;(t)] =

TR ()] < Wi(t), Vt € [-71]].

W) s [7(0)] < Vilt), Ve € [~o,t;

(22)
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Suppose case (i) occurs, we obtain which contradicts (25). Therefore (20) holds.
(£ . Lete — 0T,
0 < D7(Jz(t)] - Vi(t;))
) Tt +h)| = Vit + h — . .
= Jim sup {\ ( )!h Vi( ) M (n—l—m)maX{lI%l?S}%{Wh},1%32‘51%{7@}}—l—l
Cm@)| - Vz’(tf)} we have from (20) that
h
xi(t) —xf| < i[A 4 gle™M
s [T R[] Ioie) —eil = it
T e " < M|(¢,9) = (2%, y") e
~ ) -,y €
— lim ian( +h) — Vilt)
iy " i) 9l < AGIA+ele™
= Dmi(t)| — D-Vi(t). (23) T
In view of (12), (17) and (21), we have < M|[(gp,) — (;p*,y*)He—AzZ?)
D™ |z(t7)] forallt > 0,i =1,2,---,n;j5 = 1,2,---,m. The
m proof of Theorem 8 is completed. O
< —alTit Z |O‘ﬂ| + |ﬁjl ,ngg( i)
J=1 Corollary 9 Suppose assumption A holds, and
n if there exist some constanty; > 0,(i =
= + > (il + 1Bl gys () 1,2,-+,n);¢ > 0,(j = 1,2, -+, m) such that
7j=1

- —ain; + 275 (il + 851l G < 0,
< —aVi( Z |vji| + | Bjil ,UJW( ) ’ (28)

& —b;¢ + >isi (|pij| + laijl)vimi < 0.
< D_Vi(t}) (24) 3G 22_1(‘17]‘ IQJDV n
Then system (1) has a unique equilibrium paoifit

which contradicts (23). hich is globally exponentially stabl
Suppose case (ii) occurs, we obtain whiehis g y exp ally stable.

[y

0 < D ([y;;) — W;(£;)) Corollary 10 Let Assumption A hold, and suppose
@j(tj +h)| — Wj(t; +h) thatF,, ., — D~' EU is an M-matrix. Then system (1)
= lif{}, sup A has a unique equilibrium point* which is globally

exponentially stable.

) - Wj(@)}
h 4 Anillustrative example

RN /(R 1G] o _ |
= hgl(}f sup h In this section, we give an example to illustrate effec-
. (4 tiveness of our results.
_ lim inf Wit5 + ) — W5(t5) Example 4.1 Considering the following fuzzy BAM
h—0~ h neural networks with constant delays.
= Dy; ()| = D-W;(t5). (25)
| h ’ zi(t) = —aiwi(t) + Nj=y ajifi(yi(t — 7))
In view of (12), (18) and (22), we have
D () + V5o Bifi(y;(t — 7))
< bl )]+ Y (vl + la v (t) + Njo Tjowj + Vo Hyiug + I
=1
n L (¢ = —biu:(t 2_ ii0i (2 (6 —
=1
n + Vi1 Gijgi(xi(t — o))
< bWE) + Do (lpil + laigviVi(e) ) )
i=1 + Niz1 Kijui + Vizy Lijui + Jj
<  D_Wj(t;) (26) (29)
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wherei,j = 1,2.f;(z) = gi(z) = (lz + 1| — |z —
1)),a; = bj = L,a11 = a1z = 1/3,a21 = axn =
/4,811 = P2 = 1/5,821 = P2 = 1/6,p11 =
p12 = 1/4,pa1 = p22 = 1/3,q11 = q12 = 1/6,q21 =
q = 1/5,Tj; = Hj; = Kijj = Lij = 1,u; = uj =
1,(,7=1,2),1; = Jj = 1,(i,j =1,2),0=7=2.

So, by easy computation, we can see that

p(D7LEU) = 0.95 < 1. Therefore, from Theorem 7,

system (29) has an unique equilibrium point which is

globally exponentially stable (see Fig.1.).

Fig.1. The Dynamics of system (29) with the initial values x,(0)=0.3,x,(0)=1.5,y, (0)=0.8,y,(0)=2.3
35 I
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5 Conclusion

In this paper, fuzzy BAM neural networks with con-
stant delays has been studied. Some sufficient condi- [11]

tions for existence, uniqueness and global exponential
stability of equilibrium point have been obtained. The
criteria of stability is simple and independent of time
delay. It is only associated with the templates of sys-
tem (1). Moreover an example is given to illustrate the

effectiveness of our results obtained.
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